مدل سازی تحلیل بقاء با استفاده از مدل کاکس در بیماران مبتلا به سرطان معده
Authors
Abstract:
Background & Objectives: Cancer has been traditionally regarded as a fatal disease it is a major public health problem in many countries throughout the world. In recent years, cancer morbidity and mortality has increased in our country and notably stomach cancer now ranks second or third among all cancers types with regard to morbidity.Methods: Our study included all gastric cancer patients registered in the cancer registry of Fars province. The patients' survival status was followed using phone calls and death records from hospitals, other medical centers, and the city's cemetery. Data analysis involved the use of the nonparametric Kaplan-Meier and Cox proportional hazards models and was performed with the software package SPSS V.13.Results: Of the 442 patients with gastric cancer, 303 cases (68.6 percents) were male, and the mean age of patients was 58.41 years (SD=14.46). In univariate analysis with the KM method, a statistically significant association was found between survival rates and the following factors: age at diagnosis (P<0.001), tumor grade (P=0.009), presence of metastases (P<0.001), and type of the initial treatment (P=<0.001). Factors without a significant relationship with the survival rate included sex, ethnicity, weight, BMI, tobacco use, history of cancer in close or distant relatives, place of residence, number of children, marital status, occupation, and income. In Cox regression, only age at diagnosis, tumor grade, and the presence of metastases showed a significant association with survival rates.Conclusions: Our results imply that early detection of cancer at a lower age and in lower tumor grades could be important for increasing the patients' life expectancy.
similar resources
تحلیل بقای بیماران مبتلا به سرطان معده با مدل کاکس: یک مطالعه پنج ساله
Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal" mso-tsty...
full textمقایسه رگرسیون کاکس و مدل های پارامتریک در تحلیل بقای بیماران مبتلا به سرطان معده
Background & Objectives: Although Cox regression is commonly used to detect relationships between patient survival and demographic/clinical variables, there are situations where parametric models can yield more accurate results. The objective of this study was to compare two survival regression methods, namely Cox regression and parametric models, in patients with gastric carcinoma registered a...
full textتحلیل بقای بیماران مبتلا به سرطان ریه با استفاده از مدل رگرسیونی کاکس
Background and purpose: Lung cancer is the third cause of death and amongst the five common cancers in Iran. The aim of this study was to analyze the survival rate of patients with lung cancer and identifying the variables influencing their survival. Materials and methods: In a retrospective cohort study, the data was extracted from the medical records of 259 patients with lung cancer who had ...
full textمقایسهی مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیشبینی بقای بیماران مبتلا به سرطان معده
سابقه و هدف: یکی از روشهای آماری تحلیل دادههای بقا، مدل رگرسیونی کاکس است که نیازمند پذیرههایی مانند متناسب بودن مخاطرات است. در چند دهه اخیر بهکارگیری مدل شبکه عصبی مصنوعی برای پیشبینی دادههای بقا، افزایش یافته است. این مطالعه به منظور پیشبینی بقای بیماران مبتلا به سرطان معده به کمک دو مدل رگرسیونی کاکس و شبکه عصبی مصنوعی انجام شده است. مواد و روشها: طی سالهای 1381 لغایت 1385، تعداد ...
full textتحلیل دادههای بقاء در بیماران قلبی و عروقی پس از آنژیوپلاستی به کمک مدل رگرسیون کاکس
Abstract Background and purpose: Coronary artery disease is one of the major causes of death worldwide and analysis of survival data is important in these patients. The Cox model not only calculates the hazard function but also introduces other significant variables. Materials and methods: 128 patients referred to Mazandaran Heart Center from 2005 to 2007 and treated by angioplasty were fol...
full textاستفاده از مدل چندجملهای کسری در تعیین عوامل مرتبط با بقای بیماران مبتلا به سرطان معده
Background & Objectives: Cox regression model is one of the statistical methods in survival analysis. The use of smoothing techniques in Cox model makes the more accurate estimates for the parameters. Fractional polynomial is one of these techniques in Cox model. The aim of this study was to assess the effects of prognostic factors on survival of patients with gastric cancer using the fractiona...
full textMy Resources
Journal title
volume 3 issue None
pages 19- 24
publication date 2007-09
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023